Ultrasound assisted extraction of food and natural products.pdf | Ultrasound

Please download to get full document.

View again

of 21
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Documents

Published:

Views: 4 | Pages: 21

Extension: PDF | Download: 0

Share
Related documents
Description
Ultrasonics Sonochemistry 34 (2017) 540–560 Contents lists available at ScienceDirect Ultrasonics Sonochemistry journal homepage: www.elsevier.com/locate/ultson Review Ultrasound assisted ext
Transcript
  Review Ultrasound assisted extraction of food and natural products.Mechanisms, techniques, combinations, protocols and applications.A review Farid Chemat ⇑ , Natacha Rombaut, Anne-Gaëlle Sicaire, Alice Meullemiestre, Anne-Sylvie Fabiano-Tixier,Maryline Abert-Vian Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, GREEN Team Extraction, F-84000 Avignon, France a r t i c l e i n f o  Article history: Received 4 April 2016Received in revised form 9 June 2016Accepted 23 June 2016Available online 23 June 2016 Keywords: Ultrasound-assisted extractionMechanismsHybrid techniquesSafety and securityGreen impactsIndustrial application a b s t r a c t This review presents a complete picture of current knowledge on ultrasound-assisted extraction (UAE) infood ingredients and products, nutraceutics, cosmetic, pharmaceutical and bioenergy applications. It pro-vides the necessary theoretical background and some details about extraction by ultrasound, the tech-niques and their combinations, the mechanisms (fragmentation, erosion, capillarity, detexturation, andsonoporation), applications from laboratory to industry, security, and environmental impacts. In addition,the ultrasound extraction procedures and the important parameters influencing its performance are alsoincluded, together with the advantages and the drawbacks of each UAE techniques. Ultrasound-assistedextraction is a research topic, which affects several fields of modern plant-based chemistry. All thereported applications have shown that ultrasound-assisted extraction is a green and economically viablealternative to conventional techniques for food and natural products. The main benefits are decrease of extraction and processing time, the amount of energy and solvents used, unit operations, and CO 2 emissions.   2016 Elsevier B.V. All rights reserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5412. Extraction mechanisms induced by ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5412.1. Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5422.2. Erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5422.3. Sonocapillary effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5442.4. Sonoporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5442.5. Local shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5442.6. Detexturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5452.7. Combined mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5463. Influencing parameters of ultrasound assisted extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5463.1. Physical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5473.1.1. Impact of ultrasound physical characteristics: power and frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5473.1.2. Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5473.1.3. Shape and size of ultrasonic reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5473.2. Medium parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5483.2.1. Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5483.2.2. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5483.2.3. Presence of dissolved gases and external pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5483.2.4. Matrix parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 http://dx.doi.org/10.1016/j.ultsonch.2016.06.0351350-4177/   2016 Elsevier B.V. All rights reserved. ⇑ Corresponding author. E-mail address:  Farid.chemat@univ-avignon.fr (F. Chemat).Ultrasonics Sonochemistry 34 (2017) 540–560 Contents lists available at ScienceDirect Ultrasonics Sonochemistry journal homepage: www.elsevier.com/locate/ultson  4. Ultrasound techniques for extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5484.1. Conventional techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5484.2. Hybrid techniques: combination of ultrasound with conventional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5494.2.1. Sono-soxhlet: ultrasound assisted soxhlet extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5494.2.2. Sono-clevenger: ultrasound assisted clevenger distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5504.3. Combination of ultrasound with innovative techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5514.3.1. Combination of microwave and ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5514.3.2. Combination of DIC process and ultrasound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5514.3.3. Combination of ultrasound and supercritical fluid extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.3.4. Combination of ultrasound and extrusion extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5525. Protocols and applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5525.1. Fruits and vegetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5525.2. Herbs and spices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5535.3. Oleaginous seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5545.4. Microorganisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5546. HACCP and HAZOP considerations using UAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5557. Environmental impact of Ultrasound-assisted extraction (UAE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5568. Up-scaling of UAE and its applications in industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5569. Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 1. Introduction Extraction has been used probably since the discovery of fire.Egyptians and Phoenicians, Jews and Arabs, Indians and Chinese,GreeksandRomans,andevenMayasandAztecs,allpossessedinno-vative extraction and distillationprocesses used even for perfumes,cosmetics or food. Nowadays, we cannot find a production line infood, pharmaceutical, cosmetic, nutraceutic, or bioenergy indus-tries, which do not use extraction processes, such as (maceration,solvent extraction, steam or hydro-distillation, cold pressing,squeezing . . . ). With the increasing energy costs and the drive toreduce greenhouse gas emissions, food and plant-based chemicalindustriesarechallengedtofindnewtechnologiesinordertoreduceenergyconsumption,tomeetlegalrequirementsonemissions,pro-duct/processsafetyandcontrol,andforcostreductionandincreasedquality as well as functionality. For example, existing extractiontechnologies have considerable technological and scientificbottlenecks to overcome: often requiring up to 50% of investmentsin a new plant and more than 70% of total process energy used infood industries [1]. In the last two decades, these shortcomingshave led to the consideration of the use of enhanced and effi-cient extraction techniques amenable to automation such asultrasound-assisted extraction. Shorter extraction times, reducedorganicsolventconsumption,energyandcostssaved,werethemaintasks pursued. Driven by these goals, advances in ultrasound-assistedextractionhaveresultedinanumberofinnovativetechniquessuch as ultrasound-assisted Soxhlet extraction, ultrasound-assistedClevenger distillation, continuous ultrasound-assisted extraction, andcombination of ultrasound with other techniques such as microwave,extrusion, andsupercriticalfluidextraction.To meet the requirements of the market and of the regulations,the sono-extract must meet a number of quality criteria, contraryto some popular misconceptions; the ‘‘natural” state of the extractis no guarantee of its harmlessness to human and its environment.In such changingcontext, nowadayswe must include the changeof extraction conscience from a simple interest in data analysis tointerest in models and the strongconsideration of the environmen-tal side effects of our practice as a consequence of the high demandof extraction information. This evolution or revolution of extrac-tion of natural products is resumed in Fig. 1. Green extraction of naturals products could be a new concept to meet the challengesof the 21st century, to protect both the environment and con-sumers and in the meantime enhance competition of industriesto be more ecologic, economic and innovative [2,3].Ultrasound is a key-technology in achieving the objective of sustainable ‘‘green” chemistry and extraction. Ultrasound is wellknown to have a significant effect on the rate of various processesin the chemical and food industry. Using ultrasound, full extrac-tions can now be completed in minutes with high reproducibility,reducing the consumption of solvent, simplifying manipulationand work-up, giving higher purity of the final product, eliminatingpost-treatment of waste water and consuming only a fraction of the fossil energy normally needed for a conventional extractionmethod such as Soxhlet extraction, maceration or Clevenger distil-lation. Several classes of food components such as aromas, pig-ments, antioxidants, and other organic and mineral compoundshave been extracted, analyzed and formulated efficiently from avariety of matrices (mainly animal tissues, microalgae, yeasts, foodand plant materials).This review presents a complete picture of current knowledgeon ultrasound-assisted extraction of food and natural products.The readers like chemists, biochemists, chemical engineers, physi-cians, and food technologists even from academia or industry willfind a deep and complete perspective regarding ultrasound-assisted extraction. This review will not systematically addressthe following topics, which were pertinently covered by recentreviews:   Ultrasound cavitation theory [4];   Guidelines of good practice for UAE [5];   Application of ultrasound in food processing [6].The first part presents the different mechanisms involved dur-ing UAE (fragmentation, erosion, capillarity, detexturation, andsonoporation) and influencing parameters. The second part is ded-icated to the importance of the ultrasound techniques and theircombinations. The third part focuses on applications of UAE in dif-ferent fields and presentation of most relevant procedures. The lastpart gives new insights in term of up-scaling and industrial appli-cations, quality, security and safety considerations, environmentalimpacts and future directions for research and industry. 2. Extraction mechanisms induced by ultrasound UAE of natural products has been widely investigated, withnumerous examples, which could be found in literature. Addition-ally, a few very good reviews on the subject were published withinthe last years [6–9]. However in these reviews and throughout F. Chemat et al./Ultrasonics Sonochemistry 34 (2017) 540–560  541  literature, mechanisms leading to extraction enhancement due tothe use of ultrasound are rarely investigated. Some referencepapers describe the effects of ultrasound propagation in a solid/liq-uid media [10,11]. Cavitationphenomena leadsto high shear forcesin the media. The implosion of cavitation bubbles on a product’ssurface results in micro-jetting which generates several effectssuch as surface peeling, erosion and particle breakdown. Addition-ally, implosion of cavitation bubbles in a liquid media leads tomacro-turbulences and to a micro mixing. Surprisingly, in mostpublications dealing with UAE of natural products, the authors jus-tify yields enhancement by cavitation effects occurring duringultrasonic irradiation without further investigations.Toma et al. (2001) [12] demonstrated that a fragmentation of the matrix occurred during irradiation and an enhanced hydrationof the matrix due to ultrasound. The authors also showed anincrease of the extraction index for sonicated samples comparedto non-sonicated samples. To pursue the understanding and illus-trate the ultrasound effect on a vegetal matrix during UAE, weexamined closely different studies and we noticed that ultrasoundextraction doesn’t act with one mechanism but through differentindependent or combined mechanisms between fragmentation,erosion, capillarity, detexturation, and sonoporation. The followingsection aims at highlighting physical impacts of ultrasound on avegetal matrix, which could be linked to extraction yield increase.All studies refer to high power ultrasound corresponding to fre-quencies of 20 or 25 kHz.  2.1. Fragmentation In some cases, during application of ultrasound in a liquidmedia containing a raw material, it can be noticed a rapid fragmen-tation of the raw material. The impact of fragmentation induced byultrasound is illustrated in this section throughout the example of chlorophyll extraction from spinach leaves (Fig. 2). This effect wasexamined using an ultrasound probe (20 kHz, UIP1000 HdT,Hielscher). During UAE, it was noticed a quick fragmentation of the spinach leaves in the first minutes of sonication whereas leavesdid not seems impacted during conventional extraction performedby maceration. The extraction kinetics of chlorophylls from spi-nach has been monitored by UV (Fig. 2-A). Comparing the extrac-tion rate of chlorophylls between UAE process and macerationprocess, a linear increase is obtained at the beginning of UAE, cor-responding to a direct solubilization of chlorophylls. This effect ismost probably due to the reduction in particle size occurring dur-ing application of ultrasound. Spinach residues were collected afterfiltration to measure the particle size distribution (Fig. 2-B). On thechartare plottedparticlesize distributions below1100 l mfor resi-dues from UAE and maceration. It has been noted that 80% of thesample mass for maceration particles are beyond 1100 l m andcould not be measured by the same equipment. The average parti-cle size of spinach residue after UAE (200 l m) is lower than themaceration one (300 l m). Fragmentation of friable solids resultingfrom ultrasonic cavitation has been identified by several authors[11,13,14]. Fragmentation can be due to inter-particle collisionsand from shockwaves created from collapsing cavitation bubblesin the liquid. A direct consequence of the reduction in particle sizeby ultrasound action is the increase of surface area of the solidresulting in higher mass transfer and increased extraction rateand yield.  2.2. Erosion Some authors have already noticed erosion of raw plant mate-rial when treated by ultrasound. For example, UAE of boldo leaveshas been studied by Petigny et al. (2013) [15] using an ultrasonicprobe (20 kHz, UIP1000 hd, Hielscher). Comparison of extraction Fig. 1.  Ultrasound-assisted extraction: evolution or revolution.542  F. Chemat et al./Ultrasonics Sonochemistry 34 (2017) 540–560  yields shows enhancement of extraction yield from 20% for con-ventional maceration to 25% with UAE (Fig. 3-A). Extraction rateenhancement is also noted during the first stage of extraction.Comparison of SEM observations of leaf surface before and aftertreatment show that leaves are not fragmented, but a localizedeffect has been noticed. Boldo leaves possess trichomes on thesurface of leaves, which seems to be specifically impacted by ultra-sound (Fig. 3-B). Hence, theses structure seem to have been dam-aged or removed from the leaf after ultrasound treatment, whichis not the case of leaves submitted to maceration. The erosionenhanced accessibility of water as solvent to the leaf furtherimproving extraction and solubilization. Given those observations, Fig. 3.  Effect of power ultrasound on boldo leaves. (  A : Comparison of extraction kinetics of soluble matter in water for UAE, US probe 20 kHz ( ) and for maceration ( s );  B :SEM microscopic observation of trichomes on leaf surface, 1) control leaf surface, 2) leaf surface after conventional process, 3) leaf surface after UAE;  C : Proposed mechanismfor effect of cavitation bubbles on boldo leaf surface ( a ) Plant profile with a trichome at the surface of the leaf, ( b ) Generation of a cavitation bubble, ( c ) Collapse of thecavitation bubble which generates a micro-jet directed towards the surface and ( d ) Abrasion of the surface, breaking of the trichome, and release of soluble material in thesurrounding medium). Fig. 2.  Effect of power ultrasound on spinach leaves. (  A : Comparison of chlorophyll extraction kinetics for UAE, US probe 20 kHz ( ) and for maceration (M,  s ); B : Comparison of particle size repartition (below 1 mm) of spinach residue for UAE ( ) and for maceration ( s )). F. Chemat et al./Ultrasonics Sonochemistry 34 (2017) 540–560  543
Recommended
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks